Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.832
1.
Aging Clin Exp Res ; 36(1): 108, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717552

INTRODUCTION: Wrist-worn activity monitors have seen widespread adoption in recent times, particularly in young and sport-oriented cohorts, while their usage among older adults has remained relatively low. The main limitations are in regards to the lack of medical insights that current mainstream activity trackers can provide to older subjects. One of the most important research areas under investigation currently is the possibility of extrapolating clinical information from these wearable devices. METHODS: The research question of this study is understanding whether accelerometry data collected for 7-days in free-living environments using a consumer-based wristband device, in conjunction with data-driven machine learning algorithms, is able to predict hand grip strength and possible conditions categorized by hand grip strength in a general population consisting of middle-aged and older adults. RESULTS: The results of the regression analysis reveal that the performance of the developed models is notably superior to a simple mean-predicting dummy regressor. While the improvement in absolute terms may appear modest, the mean absolute error (6.32 kg for males and 4.53 kg for females) falls within the range considered sufficiently accurate for grip strength estimation. The classification models, instead, excel in categorizing individuals as frail/pre-frail, or healthy, depending on the T-score levels applied for frailty/pre-frailty definition. While cut-off values for frailty vary, the results suggest that the models can moderately detect characteristics associated with frailty (AUC-ROC: 0.70 for males, and 0.76 for females) and viably detect characteristics associated with frailty/pre-frailty (AUC-ROC: 0.86 for males, and 0.87 for females). CONCLUSIONS: The results of this study can enable the adoption of wearable devices as an efficient tool for clinical assessment in older adults with multimorbidities, improving and advancing integrated care, diagnosis and early screening of a number of widespread diseases.


Accelerometry , Hand Strength , Wrist , Humans , Hand Strength/physiology , Male , Female , Aged , Accelerometry/instrumentation , Accelerometry/methods , Middle Aged , Wrist/physiology , Wearable Electronic Devices , Aged, 80 and over , Machine Learning
2.
JMIR Mhealth Uhealth ; 12: e50620, 2024 May 01.
Article En | MEDLINE | ID: mdl-38717366

Background: Wearables that measure vital parameters can be potential tools for monitoring patients at home during cancer treatment. One type of wearable is a smart T-shirt with embedded sensors. Initially, smart T-shirts were designed to aid athletes in their performance analyses. Recently however, researchers have been investigating the use of smart T-shirts as supportive tools in health care. In general, the knowledge on the use of wearables for symptom monitoring during cancer treatment is limited, and consensus and awareness about compliance or adherence are lacking. objectives: The aim of this study was to evaluate adherence to and experiences with using a smart T-shirt for the home monitoring of biometric sensor data among adolescent and young adult patients undergoing cancer treatment during a 2-week period. Methods: This study was a prospective, single-cohort, mixed methods feasibility study. The inclusion criteria were patients aged 18 to 39 years and those who were receiving treatment at Copenhagen University Hospital - Rigshospitalet, Denmark. Consenting patients were asked to wear the Chronolife smart T-shirt for a period of 2 weeks. The smart T-shirt had multiple sensors and electrodes, which engendered the following six measurements: electrocardiogram (ECG) measurements, thoracic respiration, abdominal respiration, thoracic impedance, physical activity (steps), and skin temperature. The primary end point was adherence, which was defined as a wear time of >8 hours per day. The patient experience was investigated via individual, semistructured telephone interviews and a paper questionnaire. Results: A total of 10 patients were included. The number of days with wear times of >8 hours during the study period (14 d) varied from 0 to 6 (mean 2 d). Further, 3 patients had a mean wear time of >8 hours during each of their days with data registration. The number of days with any data registration ranged from 0 to 10 (mean 6.4 d). The thematic analysis of interviews pointed to the following three main themes: (1) the smart T-shirt is cool but does not fit patients with cancer, (2) the technology limits the use of the smart T-shirt, and (3) the monitoring of data increases the feeling of safety. Results from the questionnaire showed that the patients generally had confidence in the device. Conclusions: Although the primary end point was not reached, the patients' experiences with using the smart T-shirt resulted in the knowledge that patients acknowledged the need for new technologies that improve supportive cancer care. The patients were positive when asked to wear the smart T-shirt. However, technical and practical challenges in using the device resulted in low adherence. Although wearables might have potential for home monitoring, the present technology is immature for clinical use.


Feasibility Studies , Neoplasms , Wearable Electronic Devices , Humans , Adolescent , Male , Prospective Studies , Female , Neoplasms/psychology , Neoplasms/therapy , Adult , Wearable Electronic Devices/statistics & numerical data , Wearable Electronic Devices/standards , Wearable Electronic Devices/psychology , Cohort Studies , Denmark , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Young Adult
3.
JMIR Res Protoc ; 13: e55452, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713508

BACKGROUND: Physical capacity and physical activity are important aspects of physical functioning and quality of life in people with a chronic disease such as Parkinson disease (PD) or chronic obstructive pulmonary disease (COPD). Both physical capacity and physical activity are currently measured in the clinic using standardized questionnaires and tests, such as the 6-minute walk test (6MWT) and the Timed Up and Go test (TUG). However, relying only on in-clinic tests is suboptimal since they offer limited information on how a person functions in daily life and how functioning fluctuates throughout the day. Wearable sensor technology may offer a solution that enables us to better understand true physical functioning in daily life. OBJECTIVE: We aim to study whether device-assisted versions of 6MWT and TUG, such that the tests can be performed independently at home using a smartwatch, is a valid and reliable way to measure the performance compared to a supervised, in-clinic test. METHODS: This is a decentralized, prospective, observational study including 100 people with PD and 100 with COPD. The inclusion criteria are broad: age ≥18 years, able to walk independently, and no co-occurrence of PD and COPD. Participants are followed for 15 weeks with 4 in-clinic visits, once every 5 weeks. Outcomes include several walking tests, cognitive tests, and disease-specific questionnaires accompanied by data collection using wearable devices (the Verily Study Watch and Modus StepWatch). Additionally, during the last 10 weeks of this study, participants will follow an aerobic exercise training program aiming to increase physical capacity, creating the opportunity to study the responsiveness of the remote 6MWT. RESULTS: In total, 89 people with PD and 65 people with COPD were included in this study. Data analysis will start in April 2024. CONCLUSIONS: The results of this study will provide information on the measurement properties of the device-assisted 6MWT and TUG in the clinic and at home. When reliable and valid, this can contribute to a better understanding of a person's physical capacity in real life, which makes it possible to personalize treatment options. TRIAL REGISTRATION: ClinicalTrials.gov NCT05756075; https://clinicaltrials.gov/study/NCT05756075. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/55452.


Parkinson Disease , Pulmonary Disease, Chronic Obstructive , Wearable Electronic Devices , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/psychology , Parkinson Disease/physiopathology , Parkinson Disease/diagnosis , Prospective Studies , Male , Aged , Female , Walk Test/methods , Middle Aged , Observational Studies as Topic , Physical Functional Performance , Quality of Life
4.
Sci Rep ; 14(1): 10428, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714762

Muscle strength assessments are vital in rehabilitation, orthopedics, and sports medicine. However, current methods used in clinical settings, such as manual muscle testing and hand-held dynamometers, often lack reliability, and isokinetic dynamometers (IKD), while reliable, are not easily portable. The aim of this study was to design and validate a wearable dynamometry system with high accessibility, accuracy, and reliability, and to validate the device. Therefore, we designed a wearable dynamometry system (WDS) equipped with knee joint torque sensors. To validate this WDS, we measured knee extension and flexion strength in 39 healthy adults using both the IKD and WDS. Comparing maximal isometric torque measurements, WDS and IKD showed strong correlation and good reliability for extension (Pearson's r: 0.900; intraclass correlation coefficient [ICC]: 0.893; standard error of measurement [SEM]: 9.85%; minimal detectable change [MDC]: 27.31%) and flexion (Pearson's r: 0.870; ICC: 0.857; SEM: 11.93%; MDC: 33.07%). WDS demonstrated excellent inter-rater (Pearson's r: 0.990; ICC: 0.993; SEM: 4.05%) and test-retest (Pearson's r: 0.970; ICC: 0.984; SEM: 6.15%) reliability during extension/flexion. User feedback from 35 participants, including healthcare professionals, underscores WDS's positive user experience and clinical potential. The proposed WDS is a suitable alternative to IKD, providing high accuracy, reliability, and potentially greater accessibility.


Knee Joint , Muscle Strength Dynamometer , Muscle Strength , Torque , Wearable Electronic Devices , Humans , Male , Adult , Female , Knee Joint/physiology , Muscle Strength/physiology , Reproducibility of Results , Range of Motion, Articular/physiology , Young Adult , Equipment Design
5.
Curr Opin Crit Care ; 30(3): 275-282, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38690957

PURPOSE OF REVIEW: Wearable wireless sensors for continuous vital signs monitoring (CVSM) offer the potential for early identification of patient deterioration, especially in low-intensity care settings like general wards. This study aims to review advances in wearable CVSM - with a focus on the general ward - highlighting the technological characteristics of CVSM systems, user perspectives and impact on patient outcomes by exploring recent evidence. RECENT FINDINGS: The accuracy of wearable sensors measuring vital signs exhibits variability, especially notable in ambulatory patients within hospital settings, and standard validation protocols are lacking. Usability of CMVS systems is critical for nurses and patients, highlighting the need for easy-to-use wearable sensors, and expansion of the number of measured vital signs. Current software systems lack integration with hospital IT infrastructures and workflow automation. Imperative enhancements involve nurse-friendly, less intrusive alarm strategies, and advanced decision support systems. Despite observed reductions in ICU admissions and Rapid Response Team calls, the impact on patient outcomes lacks robust statistical significance. SUMMARY: Widespread implementation of CVSM systems on the general ward and potentially outside the hospital seems inevitable. Despite the theoretical benefits of CVSM systems in improving clinical outcomes, and supporting nursing care by optimizing clinical workflow efficiency, the demonstrated effects in clinical practice are mixed. This review highlights the existing challenges related to data quality, usability, implementation, integration, interpretation, and user perspectives, as well as the need for robust evidence to support their impact on patient outcomes, workflow and cost-effectiveness.


Vital Signs , Wearable Electronic Devices , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Wireless Technology/instrumentation
6.
JMIR Mhealth Uhealth ; 12: e50826, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717816

BACKGROUND: Mobile health (mHealth) wearable devices are increasingly being adopted by individuals to help manage and monitor physiological signals. However, the current state of wearables does not consider the needs of racially minoritized low-socioeconomic status (SES) communities regarding usability, accessibility, and price. This is a critical issue that necessitates immediate attention and resolution. OBJECTIVE: This study's aims were 3-fold, to (1) understand how members of minoritized low-SES communities perceive current mHealth wearable devices, (2) identify the barriers and facilitators toward adoption, and (3) articulate design requirements for future wearable devices to enable equitable access for these communities. METHODS: We performed semistructured interviews with low-SES Hispanic or Latine adults (N=19) from 2 metropolitan cities in the Midwest and West Coast of the United States. Participants were asked questions about how they perceive wearables, what are the current benefits and barriers toward use, and what features they would like to see in future wearable devices. Common themes were identified and analyzed through an exploratory qualitative approach. RESULTS: Through qualitative analysis, we identified 4 main themes. Participants' perceptions of wearable devices were strongly influenced by their COVID-19 experiences. Hence, the first theme was related to the impact of COVID-19 on the community, and how this resulted in a significant increase in interest in wearables. The second theme highlights the challenges faced in obtaining adequate health resources and how this further motivated participants' interest in health wearables. The third theme focuses on a general distrust in health care infrastructure and systems and how these challenges are motivating a need for wearables. Lastly, participants emphasized the pressing need for community-driven design of wearable technologies. CONCLUSIONS: The findings from this study reveal that participants from underserved communities are showing emerging interest in using health wearables due to the COVID-19 pandemic and health care access issues. Yet, the needs of these individuals have been excluded from the design and development of current devices.


COVID-19 , Poverty , Qualitative Research , Wearable Electronic Devices , Humans , COVID-19/psychology , COVID-19/epidemiology , Wearable Electronic Devices/statistics & numerical data , Female , Male , Adult , Poverty/psychology , Poverty/statistics & numerical data , Middle Aged , Hispanic or Latino/psychology , Hispanic or Latino/statistics & numerical data , Telemedicine/methods , Telemedicine/statistics & numerical data , Interviews as Topic/methods , Perception
7.
Mikrochim Acta ; 191(6): 301, 2024 05 06.
Article En | MEDLINE | ID: mdl-38709350

In the era of wearable electronic devices, which are quite popular nowadays, our research is focused on flexible as well as stretchable strain sensors, which are gaining humongous popularity because of recent advances in nanocomposites and their microstructures. Sensors that are stretchable and flexible based on graphene can be a prospective 'gateway' over the considerable biomedical speciality. The scientific community still faces a great problem in developing versatile and user-friendly graphene-based wearable strain sensors that satisfy the prerequisites of susceptible, ample range of sensing, and recoverable structural deformations. In this paper, we report the fabrication, development, detailed experimental analysis and electronic interfacing of a robust but simple PDMS/graphene/PDMS (PGP) multilayer strain sensor by drop casting conductive graphene ink as the sensing material onto a PDMS substrate. Electrochemical exfoliation of graphite leads to the production of abundant, fast and economical graphene. The PGP sensor selective to strain has a broad strain range of ⁓60%, with a maximum gauge factor of 850, detection of human physiological motion and personalized health monitoring, and the versatility to detect stretching with great sensitivity, recovery and repeatability. Additionally, recoverable structural deformation is demonstrated by the PGP strain sensors, and the sensor response is quite rapid for various ranges of frequency disturbances. The structural designation of graphene's overlap and crack structure is responsible for the resistance variations that give rise to the remarkable strain detection properties of this sensor. The comprehensive detection of resistance change resulting from different human body joints and physiological movements demonstrates that the PGP strain sensor is an effective choice for advanced biomedical and therapeutic electronic device utility.


Dimethylpolysiloxanes , Graphite , Wearable Electronic Devices , Graphite/chemistry , Humans , Dimethylpolysiloxanes/chemistry , Movement
8.
Article En | MEDLINE | ID: mdl-38723798

Wearable and implantable sensing of biomechanical signals such as pressure, strain, shear, and vibration can enable a multitude of human-integrated applications, including on-skin monitoring of vital signs, motion tracking, monitoring of internal organ condition, restoration of lost/impaired mechanoreception, among many others. The mechanical conformability of such sensors to the human skin and tissue is critical to enhancing their biocompatibility and sensing accuracy. As such, in the recent decade, significant efforts have been made in the development of soft mechanical sensors. To satisfy the requirements of different wearable and implantable applications, such sensors have been imparted with various additional properties to make them better suited for the varied contexts of human-integrated applications. In this review, focusing on the four major types of soft mechanical sensors for pressure, strain, shear, and vibration, we discussed the recent material and device design innovations for achieving several important properties, including flexibility and stretchability, bioresorbability and biodegradability, self-healing properties, breathability, transparency, wireless communication capabilities, and high-density integration. We then went on to discuss the current research state of the use of such novel soft mechanical sensors in wearable and implantable applications, based on which future research needs were further discussed. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Implantable Materials and Surgical Technologies > Nanomaterials and Implants.


Prostheses and Implants , Wearable Electronic Devices , Humans , Equipment Design , Biosensing Techniques/instrumentation , Monitoring, Physiologic/instrumentation
9.
Nephrol Nurs J ; 51(2): 153-163, 2024.
Article En | MEDLINE | ID: mdl-38727591

Adults with chronic kidney disease (CKD) tend to be extremely sedentary. We investigated the feasibility and acceptability of a sedentary-reducing intervention for adults with CKD. The intervention utilized telephone-delivered coaching and a consumer wearable device to support participants to reduce their sedentary time. The mean age of participants in the sample was 60.5 years; 72% were women, and 83% had CKD Stage 3. At baseline, participants spent 73% of their waking time sedentary. Inter vention phone call attendance was 100%, study retention was 82%, and the intervention was rated as enjoyable (9.1/10). A telephone-delivered, sedentary-reducing intervention is feasible and acceptable in adults with CKD. Future work is needed investigating the efficacy of sedentary-reducing interventions for adults with CKD.


Feasibility Studies , Renal Insufficiency, Chronic , Sedentary Behavior , Humans , Female , Renal Insufficiency, Chronic/therapy , Middle Aged , Male , Aged , Wearable Electronic Devices
10.
Sci Rep ; 14(1): 10412, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710744

The proposed work contains three major contribution, such as smart data collection, optimized training algorithm and integrating Bayesian approach with split learning to make privacy of the patent data. By integrating consumer electronics device such as wearable devices, and the Internet of Things (IoT) taking THz image, perform EM algorithm as training, used newly proposed slit learning method the technology promises enhanced imaging depth and improved tissue contrast, thereby enabling early and accurate disease detection the breast cancer disease. In our hybrid algorithm, the breast cancer model achieves an accuracy of 97.5 percent over 100 epochs, surpassing the less accurate old models which required a higher number of epochs, such as 165.


Algorithms , Breast Neoplasms , Wearable Electronic Devices , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/diagnosis , Internet of Things , Female , Terahertz Imaging/methods , Bayes Theorem , Diagnostic Imaging/methods , Image Processing, Computer-Assisted/methods , Machine Learning
11.
PLoS One ; 19(5): e0301851, 2024.
Article En | MEDLINE | ID: mdl-38696453

This study tested the usability of a home-based self-administration transcranial direct current stimulation (tDCS) device designed specifically for women's health needs. This is a single center triple blinded clinical usability study for a new wireless, Bluetooth-controlled wearable tDCS device for women's health. The study aims to evaluate the usability and effective blinding of a home-based tDCS system. A total of forty-nine women of reproductive age were randomly allocated (1:1) to receive one session of active tDCS (n = 24) or sham tDCS (n = 25) over the motor and dorsolateral prefrontal cortex. Each participant self-administered one 20-minute session without supervision following guidance on a software application alone. The System Usability Scale (SUS) and the Patient Global Impression of Change (PGIC) were used to evaluate the usability of the system. Regardless of sham or active conditions, all users found the system easy to use without the support of researchers. Usability scores were considered to be "excellent" in both groups and no significant difference was found between sham and active groups showing effective blinding of the device (Active group: 93.7 (83.1-97.5); Sham group 90 (86.2-95) p = 0.79) and PGIC (Active group: 2 (1-2.75); Sham group 2 (1-2) p = 0.99) using an unpaired t-test or non-parametric statistical tests accordingly. The new Bluetooth-controlled wearable tDCS device is easy, safe to use and completely controlled by a smartphone app. This device is focused on women's health and will be tested as an alternative treatment for chronic pelvic pain and mood disturbance associated with menstrual cycles in further research.


Dysmenorrhea , Transcranial Direct Current Stimulation , Humans , Female , Adult , Transcranial Direct Current Stimulation/methods , Transcranial Direct Current Stimulation/instrumentation , Dysmenorrhea/therapy , Young Adult , Self Administration/instrumentation , Wearable Electronic Devices , Prefrontal Cortex/physiology
12.
Sci Rep ; 14(1): 9971, 2024 04 30.
Article En | MEDLINE | ID: mdl-38693325

Sociopositive interactions with conspecifics are essential for equine welfare and quality of life. This study aimed to validate the use of wearable ultra-wideband (UWB) technology to quantify the spatial relationships and dynamics of social behaviour in horses by continuous (1/s) measurement of interindividual distances. After testing the UWB devices' spatiotemporal accuracy in a static environment, the UWB measurement validity, feasibility and utility under dynamic field conditions was assessed in a group of 8 horses. Comparison of the proximity measurements with video surveillance data established the measurement accuracy and validity (r = 0.83, p < 0.0001) of the UWB technology. The utility for social behaviour research was demonstrated by the excellent accordance of affiliative relationships (preferred partners) identified using UWB with video observations. The horses remained a median of 5.82 m (95% CI 5.13-6.41 m) apart from each other and spent 20% (median, 95% CI 14-26%) of their time in a distance ≤ 3 m to their preferred partner. The proximity measurements and corresponding speed calculation allowed the identification of affiliative versus agonistic approaches based on differences in the approach speed and the distance and duration of the resulting proximity. Affiliative approaches were statistically significantly slower (median: 1.57 km/h, 95% CI 1.26-1.92 km/h, p = 0.0394) and resulted in greater proximity (median: 36.75 cm, 95% CI 19.5-62 cm, p = 0.0003) to the approached horse than agonistic approaches (median: 3.04 km/h, 95% CI 2.16-3.74 km/h, median proximity: 243 cm, 95% CI 130-319 cm), which caused an immediate retreat of the approached horse at a significantly greater speed (median: 3.77 km/h, 95% CI 3.52-5.85 km/h, p < 0.0001) than the approach.


Behavior, Animal , Social Behavior , Animals , Horses , Male , Female , Wearable Electronic Devices , Video Recording
13.
Sci Adv ; 10(18): eadj0604, 2024 May 03.
Article En | MEDLINE | ID: mdl-38691605

Rheumatoid arthritis (RA) is a global autoimmune disease that requires long-term management. Ambulatory monitoring and treatment of RA favors remission and rehabilitation. Here, we developed a wearable reconfigurable integrated smart device (ISD) for real-time inflammatory monitoring and synergistic therapy of RA. The device establishes an electrical-coupling and substance delivery interfaces with the skin through template-free conductive polymer microneedles that exhibit high capacitance, low impedance, and appropriate mechanical properties. The reconfigurable electronics drive the microneedle-skin interfaces to monitor tissue impedance and on-demand drug delivery. Studies in vitro demonstrated the anti-inflammatory effect of electrical stimulation on macrophages and revealed the molecular mechanism. In a rodent model, impedance sensing was validated to hint inflammation condition and facilitate diagnosis through machine learning model. The outcome of subsequent synergistic therapy showed notable relief of symptoms, elimination of synovial inflammation, and avoidance of bone destruction.


Arthritis, Rheumatoid , Arthritis, Rheumatoid/therapy , Animals , Rats , Humans , Wearable Electronic Devices , Mice , Drug Delivery Systems/instrumentation , Disease Models, Animal
14.
Sci Rep ; 14(1): 10779, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734824

Health apps and wearables are touted to improve physical health and mental well-being. However, it is unclear from existing research the extent to which these health technologies are efficacious in improving physical and mental well-being at a population level, particularly for the underserved groups from the perspective of health equity and social determinants. Also, it is unclear if the relationship between health apps and wearables use and physical and mental well-being differs across individualistic, collectivistic, and a mix of individual-collectivistic cultures. A large-scale online survey was conducted in the U.S. (individualist culture), China (collectivist culture), and Singapore (mix of individual-collectivist culture) using quota sampling after obtaining ethical approval from the Institutional Review Board (IRB-2021-262) of Nanyang Technological University (NTU), Singapore. There was a total of 1004 respondents from the U.S., 1072 from China, and 1017 from Singapore. Data were analyzed using multiple regression and negative binomial regression. The study found that income consistently had the strongest relationship with physical and mental well-being measures in all three countries, while the use of health apps and wearables only had a moderate association with psychological well-being only in the US. Health apps and wearables were associated with the number of times people spent exercising and some mental health outcomes in China and Singapore, but they were only positively associated with psychological well-being in the US. The study emphasizes the importance of considering the social determinants, social-cultural context of the population, and the facilitating conditions for the effective use of digital health technologies. The study suggests that the combined use of both health apps and wearables is most strongly associated with better physical and mental health, though this association is less pronounced when individuals use only apps or wearables.


Mental Health , Mobile Applications , Wearable Electronic Devices , Humans , Singapore , Male , China , Female , United States , Adult , Middle Aged , Surveys and Questionnaires , Young Adult , Adolescent , Aged
15.
J Biomed Opt ; 29(6): 065001, 2024 Jun.
Article En | MEDLINE | ID: mdl-38737791

Significance: Type 2 diabetes mellitus (T2DM) is a global health concern with significant implications for vascular health. The current evaluation methods cannot achieve effective, portable, and quantitative evaluation of foot microcirculation. Aim: We aim to use a wearable device laser Doppler flowmetry (LDF) to evaluate the foot microcirculation of T2DM patients at rest. Approach: Eleven T2DM patients and twelve healthy subjects participated in this study. The wearable LDF was used to measure the blood flows (BFs) for regions of the first metatarsal head (M1), fifth metatarsal head (M5), heel, and dorsal foot. Typical wavelet analysis was used to decompose the five individual control mechanisms: endothelial, neurogenic, myogenic, respiratory, and heart components. The mean BF and sample entropy (SE) were calculated, and the differences between diabetic patients and healthy adults and among the four regions were compared. Results: Diabetic patients showed significantly reduced mean BF in the neurogenic (p=0.044) and heart (p=0.001) components at the M1 and M5 regions (p=0.025) compared with healthy adults. Diabetic patients had significantly lower SE in the neurogenic (p=0.049) and myogenic (p=0.032) components at the M1 region, as well as in the endothelial (p<0.001) component at the M5 region and in the myogenic component at the dorsal foot (p=0.007), compared with healthy adults. The SE in the myogenic component at the dorsal foot was lower than at the M5 region (p=0.050) and heel area (p=0.041). Similarly, the SE in the heart component at the dorsal foot was lower than at the M5 region (p=0.017) and heel area (p=0.028) in diabetic patients. Conclusions: This study indicated the potential of using the novel wearable LDF device for tracking vascular complications and implementing targeted interventions in T2DM patients.


Diabetes Mellitus, Type 2 , Diabetic Foot , Foot , Laser-Doppler Flowmetry , Microcirculation , Wearable Electronic Devices , Humans , Diabetic Foot/physiopathology , Diabetic Foot/diagnostic imaging , Male , Microcirculation/physiology , Female , Laser-Doppler Flowmetry/methods , Diabetes Mellitus, Type 2/physiopathology , Middle Aged , Foot/blood supply , Aged , Wavelet Analysis , Adult
16.
Sensors (Basel) ; 24(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38732771

Human activity recognition (HAR) technology enables continuous behavior monitoring, which is particularly valuable in healthcare. This study investigates the viability of using an ear-worn motion sensor for classifying daily activities, including lying, sitting/standing, walking, ascending stairs, descending stairs, and running. Fifty healthy participants (between 20 and 47 years old) engaged in these activities while under monitoring. Various machine learning algorithms, ranging from interpretable shallow models to state-of-the-art deep learning approaches designed for HAR (i.e., DeepConvLSTM and ConvTransformer), were employed for classification. The results demonstrate the ear sensor's efficacy, with deep learning models achieving a 98% accuracy rate of classification. The obtained classification models are agnostic regarding which ear the sensor is worn and robust against moderate variations in sensor orientation (e.g., due to differences in auricle anatomy), meaning no initial calibration of the sensor orientation is required. The study underscores the ear's efficacy as a suitable site for monitoring human daily activity and suggests its potential for combining HAR with in-ear vital sign monitoring. This approach offers a practical method for comprehensive health monitoring by integrating sensors in a single anatomical location. This integration facilitates individualized health assessments, with potential applications in tele-monitoring, personalized health insights, and optimizing athletic training regimes.


Wearable Electronic Devices , Humans , Adult , Male , Female , Middle Aged , Young Adult , Human Activities , Ear/physiology , Algorithms , Activities of Daily Living , Machine Learning , Deep Learning , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Motion , Walking/physiology
17.
Sensors (Basel) ; 24(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38732782

In robot-assisted microsurgery (RAMS), surgeons often face the challenge of operating with minimal feedback, particularly lacking in haptic feedback. However, most traditional desktop haptic devices have restricted operational areas and limited dexterity. This report describes a novel, lightweight, and low-budget wearable haptic controller for teleoperated microsurgical robotic systems. We designed a wearable haptic interface entirely made using off-the-shelf material-PolyJet Photopolymer, fabricated using liquid and solid hybrid 3D co-printing technology. This interface was designed to resemble human soft tissues and can be wrapped around the fingertips, offering direct contact feedback to the operator. We also demonstrated that the device can be easily integrated with our motion tracking system for remote microsurgery. Two motion tracking methods, marker-based and marker-less, were compared in trajectory-tracking experiments at different depths to find the most effective motion tracking method for our RAMS system. The results indicate that within the 4 to 8 cm tracking range, the marker-based method achieved exceptional detection rates. Furthermore, the performance of three fusion algorithms was compared to establish the unscented Kalman filter as the most accurate and reliable. The effectiveness of the wearable haptic controller was evaluated through user studies focusing on the usefulness of haptic feedback. The results revealed that haptic feedback significantly enhances depth perception for operators during teleoperated RAMS.


Microsurgery , Robotic Surgical Procedures , Wearable Electronic Devices , Humans , Robotic Surgical Procedures/instrumentation , Robotic Surgical Procedures/methods , Microsurgery/instrumentation , Algorithms , Robotics/instrumentation , Equipment Design , Printing, Three-Dimensional
18.
Sensors (Basel) ; 24(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732868

This paper presents the design, development, and validation of a novel e-textile leg sleeve for non-invasive Surface Electromyography (sEMG) monitoring. This wearable device incorporates e-textile sensors for sEMG signal acquisition from the lower limb muscles, specifically the anterior tibialis and lateral gastrocnemius. Validation was conducted by performing a comparative study with eleven healthy volunteers to evaluate the performance of the e-textile sleeve in acquiring sEMG signals compared to traditional Ag/AgCl electrodes. The results demonstrated strong agreement between the e-textile and conventional methods in measuring descriptive metrics of the signals, including area, power, mean, and root mean square. The paired data t-test did not reveal any statistically significant differences, and the Bland-Altman analysis indicated negligible bias between the measures recorded using the two methods. In addition, this study evaluated the wearability and comfort of the e-textile sleeve using the Comfort Rating Scale (CRS). Overall, the scores confirmed that the proposed device is highly wearable and comfortable, highlighting its suitability for everyday use in patient care.


Electrodes , Electromyography , Textiles , Wearable Electronic Devices , Humans , Electromyography/methods , Electromyography/instrumentation , Male , Adult , Female , Muscle, Skeletal/physiology , Leg/physiology
19.
Sensors (Basel) ; 24(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732872

This paper presents an experimental evaluation of a wearable light-emitting diode (LED) transmitter in an optical camera communications (OCC) system. The evaluation is conducted under conditions of controlled user movement during indoor physical exercise, encompassing both mild and intense exercise scenarios. We introduce an image processing algorithm designed to identify a template signal transmitted by the LED and detected within the image. To enhance this process, we utilize the dynamics of controlled exercise-induced motion to limit the tracking process to a smaller region within the image. We demonstrate the feasibility of detecting the transmitting source within the frames, and thus limit the tracking process to a smaller region within the image, achieving an reduction of 87.3% for mild exercise and 79.0% for intense exercise.


Algorithms , Exercise , Wearable Electronic Devices , Humans , Exercise/physiology , Image Processing, Computer-Assisted/methods , Photography/instrumentation , Photography/methods , Delivery of Health Care
20.
Sensors (Basel) ; 24(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732871

Myoelectric hands are beneficial tools in the daily activities of people with upper-limb deficiencies. Because traditional myoelectric hands rely on detecting muscle activity in residual limbs, they are not suitable for individuals with short stumps or paralyzed limbs. Therefore, we developed a novel electric prosthetic hand that functions without myoelectricity, utilizing wearable wireless sensor technology for control. As a preliminary evaluation, our prototype hand with wireless button sensors was compared with a conventional myoelectric hand (Ottobock). Ten healthy therapists were enrolled in this study. The hands were fixed to their forearms, myoelectric hand muscle activity sensors were attached to the wrist extensor and flexor muscles, and wireless button sensors for the prostheses were attached to each user's trunk. Clinical evaluations were performed using the Simple Test for Evaluating Hand Function and the Action Research Arm Test. The fatigue degree was evaluated using the modified Borg scale before and after the tests. While no statistically significant differences were observed between the two hands across the tests, the change in the Borg scale was notably smaller for our prosthetic hand (p = 0.045). Compared with the Ottobock hand, the proposed hand prosthesis has potential for widespread applications in people with upper-limb deficiencies.


Artificial Limbs , Hand , Wearable Electronic Devices , Wireless Technology , Humans , Hand/physiology , Pilot Projects , Wireless Technology/instrumentation , Male , Adult , Female , Electromyography/instrumentation , Prosthesis Design
...